非官方的PyCaffe食用指南 以AlexNet为例
第三方函数 显示层输出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| def vis_square(data): """ 输入一个形如:(n, height, width) or (n, height, width, 3)的数组 并对每一个形如(height,width)的特征进行可视化sqrt(n) by sqrt(n) """
data = (data - data.min()) / (data.max() - data.min())
n = int(np.ceil(np.sqrt(data.shape[0]))) padding = (((0, n ** 2 - data.shape[0]), (0, 1), (0, 1)) + ((0, 0),) * (data.ndim - 3)) data = np.pad(data, padding, mode='constant', constant_values=1)
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.imshow(data) plt.axis('off') plt.show()
|
1、引入
导入numpy matplotlib caffe time
| import numpy as np import matplotlib.pyplot as plt import time %matplotlib inline import sys caffe_root = '/home/weijian/caffe/' # 该文件要从路径{caffe_root}/examples下运行,否则要调整这一行。 sys.path.insert(0, caffe_root + 'python') import caffe import time import cv2
|
2、加载网络
设置计算模式
| # caffe.set_device(0) # 如果你有多个GPU,那么选择第一个 # caffe.set_mode_gpu() caffe.set_mode_cpu() # 设置CPU模式
|
设置网络权重文件和网络结构文件
| caffemodel = caffe_root + 'models/bvlc_alexnet/bvlc_alexnet.caffemodel'
deploy = caffe_root + 'models/bvlc_alexnet/deploy.prototxt'
net = caffe.Net(deploy, caffemodel, caffe.TEST)
|
3、测试图像预处理
加载ImageNet图像均值 (随着Caffe一起发布的)
| mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy') mu = mu.mean(1).mean(1)
|
减去均值/调整大小
| transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', mu) transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2,1,0))
|
4、运行网络
加载图像
| img = "/home/weijian/caffe/examples/images/cat.jpg" im = caffe.io.load_image(img)
|
导入输入图像
| net.blobs['data'].data[...] = transformer.preprocess('data', im) start = time.clock()
|
执行测试
| print ">>>>>>>>> classification start <<<<<<<<<<" # 向前传播 net.forward() print "time cost in classfication:" %timeit net.forward() end = time.clock() print('classification time: %f s' % (end - start))
|
5、查看目标检测结果
| synset_words = caffe_root + 'data/ilsvrc12/synset_words.txt' labels = np.loadtxt(synset_words, str, delimiter='\t')
category = net.blobs['prob'].data[0].argmax() # 最大概率的分类
class_str = labels[int(category)].split(',') class_name = class_str[0] print class_name
cv2.putText(im, class_name, (0, im.shape[0]), cv2.FONT_HERSHEY_SIMPLEX, 1, (55, 255, 155), 2)
plt.imshow(im, 'brg') plt.show()
|

6、层输出可视化
| filters = net.params['conv1'][0].data
vis_square(filters.transpose(0, 2, 3, 1)) print "上图为conv1的输出" feat = net.blobs['conv1'].data[0, :36] vis_square(feat) print "上图为conv1的前36个数据的输出" feat = net.blobs['pool5'].data[0] vis_square(feat) print "上图为pool5的输出"
|

7、显示输出结果及直方图
| feat = net.blobs['fc6'].data[0] plt.subplot(2, 1, 1) plt.plot(feat.flat) plt.subplot(2, 1, 2) _ = plt.hist(feat.flat[feat.flat > 0], bins=100) plt.show() print "以上是输出结果及直方图"
|

8、分类的聚类结果,峰值对应的标签为预测结果
| feat = net.blobs['prob'].data[0] plt.figure(figsize=(15, 3)) plt.plot(feat.flat) plt.show() print "分类的聚类结果,峰值对应的标签为预测结果."
|
